Cel dydaktyczny. W tym podrozdziale nauczysz się: wyjaśniać znaczenie zasady zachowania pędu; prawidłowo oceniać, czy układ jest układem zamkniętym, czy nie; definiować układ, którego pęd jest zachowany; opisywać matematycznie zasadę zachowania pędu dla danego układu; obliczać nieznaną wielkość na podstawie zasady
Test 3. Ruch po okręgu i grawitacja. Opis: Liczba zadań: 15. Liczba punktów: 23. Liczba grup: 2. Szacowany czas: 39min. Sprawdzane umiejętności: Rozwiązywanie zadań obliczeniowych, Analizowanie doświadczeń fizycznych, Korzystanie z informacji w formie tekstowej, Korzystanie z informacji w postaci tabel, wykresów i schematów.
v = λ T = λ f . 16.1. Ta fundamentalna zależność jest prawdziwa dla wszystkich typów fal. Dla fal na wodzie v jest prędkością rozchodzenia się fali powierzchniowej, dla dźwięku v – jest prędkością dźwięku, a dla światła widzialnego – prędkością światła.
W ruchu jednostajnym po okręgu o promieniu r przebyta droga podczas jednego obiegu jest równa obwodowi tego okręgu, czyli: s = 2 π r Jeśli uwzględnimy wzór na prędkość w ruchu jednostajnym prostoliniowym, obwód okręgu i okres obiegu, to otrzymamy wzór na prędkość w ruchu jednostajnym po okręgu:
1 pt. Siła dośrodkowa: (zaznacz wszystkie poprawne odpowiedzi wiążące się z tym zagadnieniem) F d = m v 2 r F_d=\frac {mv^2} {r} F d = r m v 2 . Siła powodująca ruch ciała po okręgu jest skierowana do środka tego okręgu. f = n t f=\frac {n} {t} f = t n . Funkcję siły dośrodkowej może pełnić wiele różnych sił. Multiple Choice.
Zapisujemy zatem: WniezachAB = Δ(Ek + Ep)AB = ΔEAB. W niezach A B = Δ ( E k + E p) A B = Δ E A B. 8.13. W takim przypadku zasada zachowania energii jest wyrażona w następujący sposób: energia mechaniczna cząsteczki nie ulega zmianie, jeśli siły niezachowawcze, które mogą na nią oddziaływać, wykonują zerową pracę.
W analizie ruchu piłki na Ilustracji 8.2 całkowita energia mechaniczna nigdy się nie zmieniała, zarówno wtedy, gdy ciało zwiększało swoją energię potencjalną podczas wznoszenia, jak i odwrotnie, gdy zmniejszało ją podczas lotu opadającego. Siły niezachowawcze (ang. non-conservative force) mają inne właściwości.
tak też tutaj, żeby wprowadzić stały wzór na drogę (s) przyjmujemy s, jako drogę całego koła [czyli jego obwód], tak więc: s=2pi*r. jak podstawimy to do tego wzoru u góry, otrzymamy: V=2pi*r/T. [duże T, bo teraz jako czas bierzemy okres, w którym zrobiło się całe kółko] f=1/T. to powinnaś pamiętać z gimnazjum ;)
Grawitacja to podstawowa siła działająca między dużymi ciałami – w szczególności ciałami niebieskimi. Jest obecna w dowolnym zakątku kosmosu. Prawo powszechnej grawitacji W XVII w. Izaak Newton odkrył prawo powszechnej grawitacji. Określa ono wielkość siły oddziaływania między dwoma, posiadającymi masy (m i M) oddalonymi od
Sprawdzian z fizyki GRAWITACJA quiz for 1st grade students. Który z poniżysz wzorów opisuje ruch jednostajny po okręgu. v = 2 wszystkie planety poruszają
p8nM0hK. Zadanie 1. Znając promień orbity ziemskiej oraz okres obiegu Ziemi wokół Słońca, wyznacz masę dane tablicowe: R = 1 AU = 150 mln km = 1,5∙1011 m oraz T = 365,25 ruchu po orbicie Ziemia porusza się pod wpływem siły grawitacji wytwarzanej przez Słońce. Jest to ruch w przybliżeniu po okręgu, więc siła grawitacji jest siłą dośrodkową. Zapisujemy wzór na przyspieszenie dośrodkowe i prędkość liniową w ruchu po wartość siły prędkość do wzoru na siłę wstawiamy wzór na siłę kilku przekształceniach otrzymujemy trzecie prawo masę Słońca i podstawiamy wartości liczbowe (pamiętając o zamianie dni na sekundy).ODP. Masa Słońca wynosi około 2∙1030 2. Wyprowadź wzór na gęstość Ziemi. Przyjmij, że dany jest promień R, przyspieszenie grawitacyjne na powierzchni g oraz stała grawitacyjna trzy potrzebne wzory:– na gęstość materii ,– na objętość kuli ,– na wartość przyspieszenia ziemskiego .Podstawiamy wzór na objętość do wzoru na wzoru na przyspieszenie wyznaczamy masę i podstawiamy do powyższego Gęstość Ziemi wyraża wzór .
okres - Czas jednego pełnego okrążenia, sekunda - Jednostka okresu, częstotliwość - Liczba okrążeń w jednostce czasu, herc - Jednostka częstotliwości, dośrodkowa - Siła utrzymująca ciało w ruchu po okręgu, geostacjonarny - Satelita, który znajduje się cały czas nad tym samym punktem Ziemi, Armstrong - Pierwszy człowiek na Księżycu, przeciążenie - Stan pozornego zwiększenia ciężaru ciała, Jowisz - Największa planeta Układu Słonecznego, niedociążenie - Stan pozornego zmniejszenia ciężaru ciała, Merkury - Najmniejsza planeta Układu Słonecznego, astronomiczna - 150 mln km to jednostka ..., Newton - Odkrył prawo powszechnego ciążenia, Kopernik - Pierwszy uznał, że Ziemia jest jedną z planet krążących wokół Słońca, nów - Jedna z faz Księżyca, zaćmienie - Zjawisko astronomiczne polegające na tym, że cień jednego ciała pada na powierzchnię drugiego, Tabela de classificação Esta tabela de classificação é atualmente privada. Clique em Compartilhar para torná-la pública. Esta tabela de classificação foi desativada pelo proprietário do recurso. Esta tabela de classificação está desativada, pois suas opções são diferentes do proprietário do recurso. Conexão necessária Opções Alternar o modelo Interativos Mais formatos serão exibidos à medida que você reproduzir a atividade.
Prawo powszechnego ciążenia Dwie masy punktowe przyciągają się wzajemnie siłą wprost proporcjonalną do iloczynu ich mas, a odwrotnie proporcjonalną do kwadratu ich wzajemnej odległości Siała powszechnej grawitacji jest przyczyną na przykład spadania ciał na Ziemię, ruchu planet wokół Słońca, ruchu satelitów wokół Ziemi, pływów mórz i oceanów Wykres zależności siły grawitacji od odległości F(r) Wyznaczenie masy Ziemi Aby zważyć Ziemię wystarczy zauważyć, że wartość ciężaru ciał umieszczonego na powierzchni Ziemi jest równy wartości oddziaływania grawitacyjnego tego ciała i Ziemi. Przyrównując oba wzory możemy wyznaczyć rachunkowo masę Ziemi. Musimy znać promień Ziemi, przyśpieszenie ziemskie oraz stałą grawitacji. Pierwsze prawo Keplera Każda planeta krąży po orbicie eliptycznej, Słońce znajduje się w jednym z dwóch ognisk elipsy Drugie prawo Keplera Promień wodzący planety, czyli linia łącząca Słońce z planetą, w równych odstępach czasu zakreśla równe pola powierzchni. Z drugiego prawa wynika, że w peryhelium (w pobliżu Słońca), planeta porusza się szybciej niż w aphelium (daleko od Słońca). Trzecie prawo Keplera Stosunek kwadratu okresu obiegu planety wokół Słońca do sześcianu wielkiej półosi jej orbity (czyli największej odległości od Słońca) jest stały dla wszystkich planet Wyprowadzenie trzeciego prawa Keplera Zakładamy, że planeta obiega Słońce po okręgu, a środkiem okręgu jest środek Słońca Pole grawitacyjne- jest to przestrzeń, w której na ciało obdarzone masą działają siły grawitacji. Pole grawitacyjne jest polem wektorowym, ponieważ siła przyciągania działająca w każdym jego punkcie ma nie tylko określoną wielkość, ale również i określony kierunek. Linia sił pola- tor, po którym porusza się ciało w polu grawitacyjnym pod działaniem siły przyciągania nosi nazwę linii sił pola. Linie te maja zwrot odpowiadający kierunkowi poruszającego się ciała próbnego. Dla pola grawitacyjnego zwrot linii skierowany jest do źródła pola. Natężenie pola grawitacyjnego w danym punkcie jest to stosunek siły grawitacji działającej na umieszczone w tym punkcie ciało próbne do masy tego ciała. Jest to wielkość wektorowa, kierunek i zwrot wektora natężenia jest zgodny ze zwrotem i kierunkiem siły grawitacyjnej. Przy pomocy tej wielkości można porównywać ze sobą pola grawitacyjne pochodzące od różnych źródeł, ponieważ wielkość ta nie zależy od masy ciał umieszczonego w polu źródła. Wykres zależności natężenia pola grawitacyjnego od odległości Natężenie pola grawitacyjnego a przyspieszenie grawitacyjne- w danym punkcie pola grawitacyjnego wartość jego natężenia odpowiada wartości przyspieszania grawitacyjnego. Obie te wielkości fizyczne dla tego samego źródła pola są sobie równe, co do wartości. Pole grawitacyjne w pobliżu powierzchni Ziemi można przyjąć, że dla niewielkich obszarów przestrzeni w pobliżu Ziemi linie sił pola grawitacyjnego są do siebie równoległe, a jego natężenie jest we wszystkich punktach pola stałe i równe. Pole takie nosi nazwę jednorodnego Praca w polu grawitacyjnym Praca siły zewnętrznej w polu grawitacyjnym nie zależy od kształtu toru, po którym porusza się ciało, a tylko od położenia punktu początkowego i końcowego toru. Wyprowadzenie wzoru na pracę w polu grawitacyjnym Przy wyprowadzeniu wzoru na pracę bierzemy pod uwagę wartość średniej siły wyznaczonej ze wzoru na średnią geometryczną Energia potencjalna w polu grawitacyjnym jest wyrażona wzorem znak minus oznacza, że energia potencjalna ciała jest ujemna w stosunku do nieskończoności, gdzie jest równa zeru. Potencjał pola grawitacyjnego jest to wielkość skalarna przy pomocy, której opisujemy pole grawitacyjne w sensie energetycznym w sposób jednoznaczny. Ponieważ jego wartość nie zależy od masy ciała próbnego umieszczonego w polu źródła. Praca wyrażona potencjałem Powierzchnia ekwipotencjalna to powierzchnia, w której każdy jej punkt ma tą samą wartość potencjału. Pierwsza prędkość kosmiczna to najmniejsza prędkość, jaką należy nadać ciału względem przyciągającego je ciała niebieskiego, aby ciało to poruszało się po zamkniętej orbicie. Ciało staje się wtedy satelitą ciała niebieskiego. Dla Ziemi wynosi ona około 7,9km/s Wyprowadzenie wzoru na pierwszą prędkość kosmiczną Przyjmujemy, że podczas ruchu orbitalnego po orbicie kołowej siła grawitacji stanowi siłę dośrodkową Druga prędkość kosmiczna II prędkość kosmiczna to prędkość, jaką należy nadać obiektowi, aby opuścił na zawsze dane ciało niebieskie poruszając się dalej ruchem swobodnym. Dal danego ciała niebieskiego jest pierwiastek z dwóch razy większa od pierwszej prędkości kosmicznej. Dla Ziemi wynosi ona około 11,2km/s Wyprowadzenie wzoru na drugą prędkość kosmiczną Wyznaczamy ją porównując energię obiektu znajdującego się na powierzchni oraz w nieskończoności. Energia w nieskończoności równa jest zeru, zatem na powierzchni sumaryczna energia też musi się równać zeru. Polityka PrywatnościInformacja:Drogi Internauto! Aby móc dostarczać Ci coraz lepsze materiały redakcyjne i usługi, potrzebujemy Twojej zgody na dopasowanie treści marketingowych do Twojego zachowania. Dzięki tej zgodzie możemy utrzymywać nasze cookies w celach funkcjonalnych, aby ułatwić użytkownikom korzystanie z witryny oraz w celu tworzenia anonimowych statystyk serwisu. Potrzebujemy Twojej zgody na ich używanie oraz zapisanie w pamięci udzielić nam zgody na profilowanie, cookies i remarketing musisz mieć ukończone 16 lat. Brak zgody nie ograniczy w żaden sposób treści naszego serwisu. Udzieloną nam zgodę w każdej chwili możesz wycofać w Polityce dbamy o Twoją prywatność. Nie zwiększamy zakresu naszych ZGODYZGODA