Zbiór rozszerzony - logarytmy. Zbiór zadań do kursu: Matura Rozszerzona od 2023. Zadania z głównej części kursu do samodzielnego przećwiczenia: Zadanie 1. • Zadania zróżnicowanie są pod kątem trudności, sposobów sformułowań i zapisów. • W zbiorze znajduje się blisko 500 zadań z próbnych arkuszy maturalnych! • Książka podzielona jest na dwie części: ZADANIA ułożone tematycznie i PRÓBNE ARKUSZE MATURALNE dostosowane do wymagań CKE (3 arkusze, każdy po 25 zadań testowych Matematyka Zbiór zadań maturalnych. Lata 2002–2023. Poziom rozszerzony. 545 zadań CKE z rozwiązaniami. Autorzy. Opracował: Ryszard Pagacz Zadanie - twierdzenie Talesa, podział odcinka. Odcinek o długości a podzielić na dwa odcinki w stosunku 3 5. Pokaż rozwiązanie zadania. Zadanie - zastosowanie twierdzenia Talesa. Dane są odcinki o długościach: a, b, c. Opisać sposób konstrukcji odcinka d o długości: a) d = a b c. b) d = b 2 a. Pokaż rozwiązanie zadania. godz. 9.00 – matematyka (poziom rozszerzony), godz. 14.00 – język hiszpański (poziom rozszerzony i dwujęzyczny). Matura z matematyki na poziomie rozszerzonym - sprawdź odpowiedzi >>> Próbny zestaw egzaminacyjny: Planimetria, Zadania otwarte - poziom rozszerzony. Treści zadań , Zadania maturalne, 140406 Zadania maturalne (825) Matura 2002 (5 Kurs maturalny z matematyki (formuła 2024, poziom rozszerzony) 📚 Matematyka - planer całoroczny (od września) R 2024 Równania wymierne a zadania Zadania maturalne na dowodzenie z matematyki Poziom podstawowy i rozszerzony. Niniejszy opracowanie wychodzi naprzeciw oczekiwaniom uczniów i nauczycieli, którzy chcą się przygotować do poprawnego dowodzenia zadań maturalnych, które jakże często występują na egzaminie podstawowym i rozszerzonym. Zbiór składa się z trzech części: Matura 2023, matematyka, poziom rozszerzony. Zadania Jak informuje Centralna Komisja Egzaminacyjna zadania na egzaminie maturalnym z matematyki na poziomie rozszerzonym to wyłącznie zadania otwarte. Zadanie maturalne nr 8, matura 2021 (poziom rozszerzony) Treść zadania: Dany jest trójkąt równoboczny A B C. Na bokach A B i A C wybrano punkty — odpowiednio — D i E takie, że | B D | = | A E = 1 3 | A B |. Odcinki C D i B E przecinają się w punkcie P (zobacz rysunek). Wykaż, że pole trójkąta D B P jest 21 razy mniejsze od pola ejuRb. Lista zadańOdpowiedzi do tej matury możesz sprawdzić również rozwiązując test w dostępnej już aplikacji Matura - testy i zadania, w której jest także, np. odmierzanie czasu, dodawanie do powtórek, zapamiętywanie postępu i wyników czy notatnik :) Dziękujemy developerom z firmy Geeknauts, którzy stworzyli tę aplikację pwz: 36%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 5. (0–2)W trójkącie ABC bok AB jest 3 razy dłuższy od boku AC, a długość boku BC stanowi 4⁄5 długości boku AB . Oblicz cosinus najmniejszego kąta trójkąta ABC. Poniżej wpisz kolejno – od lewej do prawej – pierwszą, drugą oraz trzecią cyfrę po przecinku nieskończonego rozwinięcia dziesiętnego otrzymanego wyniku. pwz: 28%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 6. (0–3)Wyznacz wszystkie wartości parametru a, dla których równanie |x − 5| = (a − 1)2 − 4 ma dwa różne rozwiązania dodatnie. pwz: 19%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 7. (0–3)Dany jest trójkąt równoramienny ABC, w którym |AC| = |BC| = 6, a punkt D jest środkiem podstawy AB. Okrąg o środku D jest styczny do prostej AC w punkcie M. Punkt K leży na boku AC, punkt L leży na boku BC, odcinek KL jest styczny do rozważanego okręgu oraz |KC| = |LC| = 2 (zobacz rysunek). pwz: 25%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 8. (0–3)Liczby dodatnie a i b spełniają równość a2 + 2a = 4b2 + 4b. Wykaż, że a = 2b. pwz: 44%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 9. (0–4)Rozwiąż równanie 3cos2x + 10cos2x = 24sinx − 3 dla x ∈ ⟨0, 2π⟩. pwz: 34%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 10. (0–5)W trzywyrazowym ciągu geometrycznym (a1,a2,a3) spełniona jest równość a1 + a2 + a3 = 21⁄4. Wyrazy a1,a2,a3 są – odpowiednio – czwartym, drugim i pierwszym wyrazem rosnącego ciągu arytmetycznego. Oblicz a1. pwz: 44%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 11. (0–4)Dane jest równanie kwadratowe x2 − (3m + 2)x + 2m2 + 7m − 15 = 0 z niewiadomą x. Wyznacz wszystkie wartości parametru m, dla których różne rozwiązania x1 i x2 tego równania istnieją i spełniają warunek pwz: 33%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 12. (0–5)Prosta o równaniu x + y − 10 = 0 przecina okrąg o równaniu x2 + y2 − 8x − 6y + 8 = 0 w punktach K i L. Punkt S jest środkiem cięciwy KL. Wyznacz równanie obrazu tego okręgu w jednokładności o środku S i skali k = −3. pwz: 20%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 13. (0–4)Oblicz, ile jest wszystkich siedmiocyfrowych liczb naturalnych, w których zapisie dziesiętnym występują dokładnie trzy cyfry 1 i dokładnie dwie cyfry 2. pwz: 22%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 14. (0–6)Podstawą ostrosłupa czworokątnego ABCDS jest trapez ABCD (AB ∥ CD). Ramiona tego trapezu mają długości |AD| = 10 i |BC| = 16 , a miara kąta ABC jest równa 30°. Każda ściana boczna tego ostrosłupa tworzy z płaszczyzną podstawy kąt α, taki, że tg α = 9⁄2. Oblicz objętość tego ostrosłupa. pwz: 31%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 15. (0–7)Należy zaprojektować wymiary prostokątnego ekranu smartfona, tak aby odległości tego ekranu od krótszych brzegów smartfona były równe 0,5 cm każda, a odległości tego ekranu od dłuższych brzegów smartfona były równe 0,3 cm każda (zobacz rysunek – ekran zaznaczono kolorem szarym). Sam ekran ma mieć powierzchnię 60 cm2. Wyznacz takie wymiary ekranu smartfona, przy których powierzchnia ekranu wraz z obramowaniem jest najmniejsza. Matematyka Aksjomat Toruń Oszczędzasz 12,95 zł (41% Rabatu) Wysyłka: 1-2 dni robocze+ czas dostawy Opis Niniejszy opracowanie wychodzi naprzeciw oczekiwaniom uczniów i nauczycieli, którzy chcą się przygotować do poprawnego dowodzenia zadań maturalnych, które jakże często występują na egzaminie podstawowym i składa się z trzech części:Ponad 300 przykładowych zadań poświęconych dowodzenie, pogrupowanych w 11 działach zgodnie z podstawą programową na poziomie podstawowym i 100 zadań, które w latach 2010-2020 wystąpiły na wszystkich 400 zadań prezentowanych w ważne jest dowodzenie niech świadczy zapis z podstawy programowej z roku 2018:„Samodzielne przeprowadzanie dowodów przez uczniów rozwija takie umiejętności jak: logiczne myślenie, precyzyjne wyrażanie myśli i zdolność rozwiązywania złożonych pozwala doskonalić umiejętność dobierania trafnych argumentów i konstruowania poprawnych formułowania poprawnych rozumowań i uzasadnień jest ważna również poza matematyką.”Poniższy zbiór mogą wykorzystać nauczyciele na lekcjach matematyki, a uczniowie do samodzielnej do nauki do matury, jak i przygotowania się do konkursów wdzięczni za wszelkie uwagi dotyczące stopnia trudności, jak i z zakresu prezentowanych zadań i ich dowodów. Szczegóły Tytuł Zadania maturalne na dowodzenie z matematyki Poziom podstawowy i rozszerzony Inne propozycje autorów - Masłowski Tomasz, Toruńska Anna Podobne z kategorii - Matematyka Klienci, którzy kupili oglądany produkt kupili także: Darmowa dostawa od 199 zł Rabaty do 45% non stop Ponad 200 tys. produktów Bezpieczne zakupy Informujemy, iż do celów statystycznych, analitycznych, personalizacji reklam i przedstawianych ofert oraz celów związanych z bezpieczeństwem naszego sklepu, aby zapewnić przyjemne wrażenia podczas przeglądania naszego serwis korzystamy z plików cookies. Korzystanie ze strony bez zmiany ustawień przeglądarki lub zastosowania funkcjonalności rezygnacji opisanych w Polityce Prywatności oznacza, że pliki cookies będą zapisywane na urządzeniu, z którego korzystasz. Więcej informacji znajdziesz tutaj: Polityka prywatności. Rozumiem Zbiór zadań do matury z matematyki rozszerzonej Co trzeba zrobić, by egzamin maturalny z matematyki rozszerzonej nie stał się dręczącym koszmarem? Oczywiście odpowiednio i przede wszystkim z wyprzedzeniem się do niego przygotować! Warto jednak zdać sobie sprawę z tego, że bardzo często sam podręcznik i ćwiczenia nie wystarczą, szczególnie jeśli mówimy o rozszerzonej maturze z matematyki. Koniecznie trzeba wybrać takie pomoce naukowe, dzięki którym przećwiczysz materiał, który pojawi się na egzaminie dojrzałości z tego przedmiotu. Ale jak wybrać te odpowiednie? Z odpowiedzią przychodzi zbiór zadań maturalnych matematyka poziom rozszerzony! To opracowane przez Ryszarda Pagacza wydanie bez wątpienia pozwoli Ci odpowiednio przygotować się do matury. Poznaj jego wszystkie cechy i zalety. Zbiór zadań maturalnych Matematyka Poziom rozszerzony Zawiera wszystkie zadania, które występowały w arkuszach maturalnych CKE, na poziomie rozszerzonym w latach 2010-2020, zadania zostały podzielone i uporządkowane według rozdziałów, zbiór zadań z matematyki jest zgodny z programem nauczania w szkole średniej, do wszystkich zadań podano rozwiązania i odpowiedzi, jest to doskonała pomoc do samodzielnego przygotowania się do egzaminu, może być również stosowany przez nauczycieli. Wiedza i umiejętności to jednak nie wszystko, choć bez wątpienia są one kluczowe dla sukcesu na maturze rozszerzonej z matematyki. Mimo to, warto zadbać także o odpowiednie przećwiczenie materiału. Dokonaj tego razem z prezentowanym zbiorem zadań z matematyki!